/***************************************************************************** * @copyright 2024-202, . POWER SUPPLY CO., LTD. * @file xxx.c * @brief xxxx * @author xx * @date 2024/08/30 * @remark 初修订 *****************************************************************************/ #include #include #include "kit_math.h" int float_equal(float a, float b) { if (KIT_ABS_DIFF(a, b) < EPSILON) return 1; else return 0; } int double_equal(double a, double b) { if (KIT_ABS_DIFF(a, b) < EPSILON) return 1; else return 0; } // #define MAX(x, y) (((x) > (y)) ? (x) : (y)) float float_max(float a, float b) { if (float_equal(a, b)) { return a; } float diff = a - b; if (diff > EPSILON) { return a; } return b; } // #define MIN(x, y) (((x) < (y)) ? (x) : (y)) float float_min(float a, float b) { if (float_equal(a, b)) { return a; } float diff = a - b; if (diff < -EPSILON) { return a; } return b; } /***************************************************************************** * @brief 判断两个数差距是否超过1% * @param[in] a b 两个参数 * @return bool 超过返回true 不超过false *****************************************************************************/ bool float_diff(float a, float b) { // 处理特殊情况:两个值都为0 if (a == 0 && b == 0) { return false; } // 处理相等情况 if (float_equal(a, b)) { return false; } // 计算绝对差值 double absolute_difference = fabs(a - b); // 使用平均值进行计算 double average = (fabs(a) + fabs(b)) / 2.0; // 如果平均值为0,直接返回false if (average == 0) { return false; } // 计算差距比率 double difference_ratio = absolute_difference / average; return difference_ratio >= EQUAL_SECTION; } const uint8_t crc_byte_hi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const uint8_t crc_byte_lo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 }; const uint32_t bit_array[32] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, }; uint8_t kit_check_sum8(uint8_t* buf, uint16_t len) { uint32_t sum = 0; while (len-- > 0) sum += buf[len]; return sum; } uint16_t kit_check_crc16(const uint8_t* buf, uint32_t len) { uint8_t tmp, crc_low = 0xFF, crc_high = 0xFF; while (len-- > 0) { tmp = crc_low ^ (*buf++); crc_low = crc_high ^ crc_byte_hi[tmp]; crc_high = crc_byte_lo[tmp]; } return ((uint16_t)crc_high << 8 | crc_low); } void kit_append_crc16(uint8_t* buf, uint32_t len) { uint16_t crc = kit_check_crc16(buf, len); kit_lt_write_buf(buf, len, crc, 2); } int32_t kit_get_avg_filter_max_min(const int16_t* buf, uint32_t len) { uint32_t i; int32_t sum, min, max, tmp = 0; if ((buf != NULL) && (len > 2)) { max = min = sum = buf[0]; for (i = 1; i < len; i++) { tmp = buf[i]; if (tmp > max) max = tmp; else if (tmp < min) min = tmp; sum += tmp; } tmp = (sum - max - min) / (int32_t)(len - 2); } return tmp; } int32_t kit_get_int32_avg_filter_max_min(const int32_t* buf, uint32_t len) { uint32_t i; int32_t sum, min, max, tmp = 0; if ((buf != NULL) && (len > 2)) { max = min = sum = buf[0]; for (i = 1; i < len; i++) { tmp = buf[i]; if (tmp > max) max = tmp; else if (tmp < min) min = tmp; sum += tmp; } tmp = (sum - max - min) / (int32_t)(len - 2); } return tmp; } int32_t kit_get_avg_filter_max_min_diff(const int16_t* buf, uint32_t len, uint16_t* diff) { uint32_t i; int32_t sum, min, max, tmp = 0; if ((buf != NULL) && (len > 2)) { max = min = sum = buf[0]; for (i = 1; i < len; i++) { tmp = buf[i]; if (tmp > max) max = tmp; else if (tmp < min) min = tmp; sum += tmp; } tmp = (sum - max - min) / (int32_t)(len - 2); *diff = max - min; } return tmp; } uint32_t kit_get_unsign_avg_filter_max_min(const uint16_t* buf, uint32_t len) { uint32_t i, sum, min, max, tmp = 0; if ((buf != NULL) && (len > 2)) { max = min = sum = buf[0]; for (i = 1; i < len; i++) { tmp = buf[i]; if (tmp > max) max = tmp; else if (tmp < min) min = tmp; sum += tmp; } tmp = (sum - max - min) / (int32_t)(len - 2); } return tmp; } int32_t kit_get_dma_avg_filter_min_max(uint16_t* buf, uint32_t data_cnt, uint32_t idx, uint32_t sample_cnt) { uint32_t i; int32_t sum, max, min, tmp = 0; if ((buf != NULL) && (sample_cnt > 2)) { buf = buf + idx; max = min = sum = buf[0]; for (i = 1; i < sample_cnt; i++) { tmp = *(buf + i * data_cnt); if (tmp > max) max = tmp; else if (tmp < min) min = tmp; sum += tmp; } tmp = (sum - max - min) / (int32_t)(sample_cnt - 2); } return tmp; } void kit_copy_buf(void* dest, const void* const src, uint32_t len) { if (((dest != NULL) && (src != NULL))) { while (len-- > 0) { ((uint8_t*)dest)[len] = ((uint8_t*)src)[len]; } } } bool kit_is_buf_same(const void* const dest, const void* const src, uint32_t len) { bool res = true; while (len-- > 0) { if (((uint8_t*)dest)[len] != ((uint8_t*)src)[len]) { res = false; break; } } return res; } void kit_set_buf(void* buf, uint32_t len, uint8_t value) { while (len-- > 0) { ((uint8_t*)buf)[len] = value; } } uint32_t kit_lt_read_buf(const uint8_t* const buf, uint32_t idx, uint32_t len) { uint32_t i, data = 0; for (i = 0; i < len; i++) { data |= ((uint32_t)buf[idx + i]) << (i << 3); } return data; } uint32_t kit_add_lt_read_buf(const uint8_t* const buf, uint32_t* idx, uint32_t len) { uint32_t i, data = 0; for (i = 0; i < len; i++) { data |= ((uint32_t)buf[(*idx)++]) << (i << 3); } return data; } void kit_lt_write_buf(uint8_t* const buf, uint32_t idx, uint32_t value, uint32_t len) { while (len-- > 0) buf[idx + len] = (uint8_t)(value >> (len << 3)); } void kit_add_lt_8u_write_buf(uint8_t* const buf, uint32_t* idx, uint8_t value) { buf[(*idx)++] = value; } void kit_add_lt_16u_write_buf(uint8_t* const buf, uint32_t* idx, uint16_t value) { buf[(*idx)++] = value; buf[(*idx)++] = value >> 8; } void kit_add_lt_32u_write_buf(uint8_t* const buf, uint32_t* idx, uint32_t value) { buf[(*idx)++] = value; buf[(*idx)++] = value >> 8; buf[(*idx)++] = value >> 16; buf[(*idx)++] = value >> 24; } void kit_add_bt_write_buf(uint8_t* const buf, uint32_t* idx, uint32_t value, uint32_t len) { uint32_t i; for (i = 0; i < len; i++) { buf[(*idx)++] = (uint8_t)(value >> ((len - i - 1) << 3)); } } uint32_t kit_bt_read_buf(const uint8_t* const buf, uint32_t idx, uint32_t len) { uint32_t i, data = 0; for (i = 0; i < len; i++) { data |= ((uint32_t)buf[idx + i]) << ((len - i - 1) << 3); } return data; } uint32_t kit_bt_add_read_buf(const uint8_t* const buf, uint32_t* idx, uint32_t len) { uint32_t i, data = 0; for (i = 0; i < len; i++) { data |= ((uint32_t)buf[(*idx)++]) << ((len - i - 1) << 3); } return data; } uint32_t unsigned_add_signed_with_limit(uint32_t u_num, int32_t s_num, uint32_t upper_limit, uint32_t lower_limit) { uint32_t temp; if (s_num > 0) { temp = (uint32_t)(s_num)+u_num; if (temp > upper_limit) temp = upper_limit; } else { if (u_num < (uint32_t)(0 - s_num)) temp = lower_limit; else temp = (uint32_t)(s_num + u_num); } return temp; } uint8_t kit_dec_to_bcd(uint8_t data) { uint8_t tmp = 0; while (data >= 10) { tmp++; data -= 10; } return ((tmp << 4) | data); } uint8_t kit_dcb_to_dec(uint8_t data) { uint8_t tmp = 0; tmp = ((uint8_t)(data & (uint8_t)0xF0) >> (uint8_t)0x04) * 10; return (tmp + (data & (uint8_t)0x0F)); } void kit_bit_fill(uint8_t* buffer, uint8_t start_bit, uint8_t len, uint8_t data) { uint8_t tmp = 0xFF; uint8_t rtmp = *buffer; tmp >>= (8 - len); tmp <<= start_bit; tmp = ~tmp; rtmp &= tmp; tmp = 0xFF; tmp >>= (8 - len); data &= tmp; data <<= start_bit; rtmp |= data; *buffer = rtmp; } void kit_bit_fill_u16(uint16_t* buffer, uint8_t start_bit, uint8_t len, uint16_t data) { uint16_t tmp = 0xFFFF; uint16_t rtmp = *buffer; tmp >>= (16 - len); tmp <<= start_bit; tmp = ~tmp; rtmp &= tmp; tmp = 0xFFFF; tmp >>= (16 - len); data &= tmp; data <<= start_bit; rtmp |= data; *buffer = rtmp; } /********************************************************************* * @brief 数据类型无符号16位数据的解析,并更新数据至设备数据表 * @return 返回无符号16位数据 *********************************************************************/ uint16_t kit_get_u16(uint8_t* data, data_endian_e type) { uint16_t u16_data = 0; if (type == E_AB) { u16_data = (uint16_t)data[0] << 8 | data[1]; } else if (type == E_BA) { u16_data = (uint16_t)data[1] << 8 | data[0]; } return u16_data; } /********************************************************************* * @brief 数据类型使符号16位数据的解析 * @return 返回有符号16位数据 *********************************************************************/ int16_t kit_get_s16(uint8_t* data, data_endian_e type) { int16_t i16_data = 0; if (type == E_AB) { i16_data = (int16_t)data[0] << 8 | data[1]; } else if (type == E_BA) { i16_data = (int16_t)data[1] << 8 | data[0]; } return i16_data; } /********************************************************************* * @brief 数据类型无符号32位数据的解析 * @return 返回无符号32位数据 *********************************************************************/ uint32_t kit_get_u32(uint8_t* data, data_endian_e type) { uint32_t u32_data = 0; if (type == E_ABCD || type == E_AB) { u32_data = (uint32_t)data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3]; } else if (type == E_CDAB || type == E_BA) { u32_data = (uint32_t)data[2] << 24 | data[3] << 16 | data[0] << 8 | data[1]; } else if (type == E_BADC) { u32_data = (uint32_t)data[1] << 24 | data[0] << 16 | data[3] << 8 | data[2]; } else if (type == E_DCBA) { u32_data = (uint32_t)data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]; } return u32_data; } /********************************************************************* * @brief 数据类型有符号位数据的解析 * @return 返回符号有符号32位数据 *********************************************************************/ int32_t kit_get_s32(uint8_t* data, data_endian_e type) { int32_t i32_data = 0; if (type == E_ABCD || type == E_AB) { i32_data = (int32_t)data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3]; } else if (type == E_CDAB || type == E_BA) { i32_data = (int32_t)data[2] << 24 | data[3] << 16 | data[0] << 8 | data[1]; } else if (type == E_BADC) { i32_data = (int32_t)data[1] << 24 | data[0] << 16 | data[3] << 8 | data[2]; } else if (type == E_DCBA) { i32_data = (int32_t)data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]; } return i32_data; } /********************************************************************* * @brief 数据类型有符号位数据的解析 * @return 返回符号无符号64位数据 *********************************************************************/ uint64_t kit_get_u64(uint8_t* data, data_endian_e type) { uint64_t result = 0; if (type == E_HGFEDCBA) { // 小端模式 for (int i = 0; i < 8; i++) { result |= ((uint64_t)data[i] << (i * 8)); } } else if (type == E_ABCDEFGH) { // 大端模式 for (int i = 0; i < 8; i++) { result |= ((uint64_t)data[i] << ((7 - i) * 8)); } } else if (type == E_BADCFEHG) { // 大端字-小端字节(Big-Endian Word, Little-Endian Byte) for (int i = 0; i < 4; i++) { result |= ((uint64_t)data[i * 2 + 1] << ((7 - i * 2) * 8)); // 高位字节 result |= ((uint64_t)data[i * 2] << ((6 - i * 2) * 8)); // 低位字节 } } else if (type == E_GHEFCDAB) { // 小端字-大端字节(Little-Endian Word, Big-Endian Byte) for (int i = 0; i < 4; i++) { result |= ((uint64_t)data[i * 2 + 1] << (i * 2 * 8)); // 高位字节 result |= ((uint64_t)data[i * 2] << ((i * 2 + 1) * 8)); // 低位字节 } } return result; } /********************************************************************* * @brief 数据类型有符号位数据的解析 * @return 返回符号有符号64位数据 *********************************************************************/ int64_t kit_get_s64(uint8_t* data, data_endian_e type) { int64_t result = 0; if (type == E_HGFEDCBA) { // 小端模式 for (int i = 0; i < 8; i++) { result |= ((int64_t)data[i] << (i * 8)); } } else if (type == E_ABCDEFGH) { // 大端模式 for (int i = 0; i < 8; i++) { result |= ((int64_t)data[i] << ((7 - i) * 8)); } } else if (type == E_BADCFEHG) { // 大端字-小端字节(Big-Endian Word, Little-Endian Byte) for (int i = 0; i < 4; i++) { result |= ((int64_t)data[i * 2 + 1] << ((7 - i * 2) * 8)); // 高位字节 result |= ((int64_t)data[i * 2] << ((6 - i * 2) * 8)); // 低位字节 } } else if (type == E_GHEFCDAB) { // 小端字-大端字节(Little-Endian Word, Big-Endian Byte) for (int i = 0; i < 4; i++) { result |= ((int64_t)data[i * 2 + 1] << (i * 2 * 8)); // 高位字节 result |= ((int64_t)data[i * 2] << ((i * 2 + 1) * 8)); // 低位字节 } } return result; } /********************************************************************* * @brief 数据类型float32位数据的解析 * @return 返回float32位数据 *********************************************************************/ float kit_get_float(uint8_t* data, data_endian_e type) { union HexToF { float floatdata; uint8_t hex[4]; } HtoF; if (type == E_ABCD) { HtoF.hex[0] = *(data); HtoF.hex[1] = *(data + 1); HtoF.hex[2] = *(data + 2); HtoF.hex[3] = *(data + 3); } else if (type == E_CDAB) { HtoF.hex[0] = *(data + 2); HtoF.hex[1] = *(data + 3); HtoF.hex[2] = *(data + 0); HtoF.hex[3] = *(data + 1); } else if (type == E_BADC) { HtoF.hex[0] = *(data + 1); HtoF.hex[1] = *(data); HtoF.hex[2] = *(data + 3); HtoF.hex[3] = *(data + 2); } else if (type == E_DCBA) { HtoF.hex[0] = *(data + 3); HtoF.hex[1] = *(data + 2); HtoF.hex[2] = *(data + 1); HtoF.hex[3] = *(data); } return HtoF.floatdata; } /********************************************************************* * @brief 数据类型double位数据的解析 * @return 返回double位数据 *********************************************************************/ double kit_get_double(uint8_t* data, data_endian_e type) { uint64_t int_repr = 0; double result; // 根据不同的端序模式处理字节序 switch (type) { case E_ABCDEFGH: // 大端模式(Big Endian) for (int i = 0; i < 8; i++) { int_repr |= ((uint64_t)data[i] << ((7 - i) * 8)); } break; case E_HGFEDCBA: // 小端模式(Little Endian) for (int i = 0; i < 8; i++) { int_repr |= ((uint64_t)data[i] << (i * 8)); } break; case E_BADCFEHG: // 大端字-小端字节(Big-Endian Word, Little-Endian Byte) for (int i = 0; i < 4; i++) { int_repr |= ((uint64_t)data[i * 2 + 1] << ((7 - i * 2) * 8)); // 高位字节 int_repr |= ((uint64_t)data[i * 2] << ((6 - i * 2) * 8)); // 低位字节 } break; case E_GHEFCDAB: // 小端字-大端字节(Little-Endian Word, Big-Endian Byte) for (int i = 0; i < 4; i++) { int_repr |= ((uint64_t)data[i * 2 + 1] << (i * 2 * 8)); // 高位字节 int_repr |= ((uint64_t)data[i * 2] << ((i * 2 + 1) * 8)); // 低位字节 } break; default: // 默认大端模式(Big Endian) for (int i = 0; i < 8; i++) { int_repr |= ((uint64_t)data[i] << ((7 - i) * 8)); } break; } // 将 uint64_t 表示转换为 double memcpy(&result, &int_repr, sizeof(result)); return result; } /********************************************************************* * @brief 获取data中第index个bit位置的值 * @return 返回double位数据 *********************************************************************/ uint8_t kit_byte_pos_bit(uint8_t* data, uint16_t index, uint16_t dataSize) { uint16_t i = index / 8; uint16_t k = index % 8; if (i < dataSize) { return KIT_GET_BIT(data[i], k); } else { KITLOG(LOG_KIT_EN, INFO_EN, "数据超过范围"); KITPTF(LOG_KIT_EN, INFO_EN, "数据超过范围"); } return 0; } /********************************************************************* * @brief 判断新值和旧值之间的差异是否超过指定的范围 * @return 超出阈值 1 未超 0 *********************************************************************/ uint8_t kit_diff_change(float old_value, float new_value, float threshold) { float difference = fabs(new_value - old_value); return difference > threshold; } /* E_ABCD, // 大端模式 E_CDAB, // 小端字、大端字节 E_BADC, // 大端字、小端字节 E_DCBA, // 小端模式 */ uint8_t kit_fill_byte(uint8_t* data, data_type_e dataType, data_endian_e endian, double value) { uint8_t idx = 0; switch (dataType) { //针对配置错误的U8,I8来说,也默认可正常下发 case Uint8: case Int8: case Uint16: { uint16_t u16 = (uint16_t)value; if (endian == E_AB) { data[idx++] = u16 >> 8; data[idx++] = u16; } else if (E_BA) { data[idx++] = u16; data[idx++] = u16 >> 8; } break; } case Int16: { int16_t s16 = (int16_t)value; if (endian == E_AB) { data[idx++] = s16 >> 8; data[idx++] = s16; } else if (E_BA) { data[idx++] = s16; data[idx++] = s16 >> 8; } break; } case Uint32: case Int32: /* code */ break; case Uint64: case Int64: /* code */ break; case Float32: case Float64: /* code */ break; default: break; } return idx; } /********************************************************************* * @brief 取出word中bit位bitpos开始取bitlen长度的bit数据 * @param[in] bitPos bit开始位置从1开始。1表示bit0 * @param[in] bitLen bit取出的长度 * @param[in] word 原数据 * @return 超出阈值 1 未超 0 *********************************************************************/ uint8_t get_bit_word(uint8_t bitPos, uint8_t bitLen, uint32_t word) { if (bitPos == 0) { KITLOG(LOG_KIT_EN, ERROR_EN, "bitPos = %d,数据错误", bitPos); KITPTF(LOG_KIT_EN, ERROR_EN, "bitPos = %d,数据错误", bitPos); bitPos = 1; } uint32_t mask = (1 << bitLen) - 1; return (word >> (bitPos - 1)) & mask; }